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ABSTRACT

U3Si2 is a promising candidate for use as an accident-tolerant fuel for light water reactors.
A multi-scale computational approach was used to calculate swelling in pellet-form U3Si2 fuel.
Swelling was assumed to be equal to the volume fraction of fission gas bubbles in the fuel, and
the evolution of bubble volume fraction was determined from phase-field simulations. To pa-
rameterize the phase-field model, density-functional theory and molecular dynamics simulations
were performed. To enable molecular dynamics simulations, a new interatomic potential for the
U-Si system was developed based on the modified embedded-atom method. A new phase-field
model based on a grand-potential functional was also developed. The model is applicable to
both intergranular and intragranular bubbles. To calculate the volume fraction of bubbles, the
microstructure was decomposed into regions consisting of only intragranular or intergranular
bubbles based on a truncated octahedral grain structure, and growth of the bubbles in the two
regions was simulated separately. The total swelling was then calculated based on a weighted
average of the bubble volume fraction in the two regions. Total swelling was of the same order
of magnitude, but larger than that predicted by the existing empirical swelling model used in
BISON and a rate-theory based model. Limitations of the present approach and suggestions for
improvement are presented.
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Figure 1: Phase diagram of the U-Si system [4].

1 Introduction

In recent years, the desire for commercial nuclear reactor fuels that are more tolerant of accident
conditions has driven the search for alternatives to the currently used UO2 pellets clad in zircaloy [1].
One promising candidate for accident-tolerant fuel applications is the uranium-silicon material
system, which is already in use for research and test reactors [2, 3]. Si has very low solubility
in the pure-U phases; similarly, U has very low solubility in diamond-cubic Si. In intermediate
composition ranges, several compounds form: U3Si, U3Si2, U34Si34.5 (commonly referred to as
USi), U3Si5, USi1.88, USi2, and USi3 [4]. The phase diagram of the U-Si system is shown in Fig. 1.

The U3Si and U3Si2 phases have been the most closely studied for fuel applications. Although
the U3Si phase was initially more closely considered due to its higher U density, U3Si2 has become
preferred because of its reduced swelling in-pile in dispersion fuel [5, 6]. Compared with UO2, U3Si2
has a higher uranium density and significantly higher thermal conductivity [7]. Thus, although the
melting temperature of U3Si2 is lower than that of UO2, the much higher thermal conductivity
of U3Si2 results in much lower temperatures throughout the fuel pellet and greater margin to the
melting temperature compared with UO2 in both normal operation and accident scenarios.

Although the potentially improved thermal performance of U3Si2 makes it attractive relative
to UO2, the swelling behavior of U3Si2 in pellet form is not well studied. The only data extant
on pellet-form U3Si2 indicates that swelling could be greater than 10% for a low burnup of 0.65%
fissions per initial metal atom (FIMA) [8]. More data is available for U3Si2 in dispersion form.
Such dispersion fuels are used in mini-plate form in research reactors. Swelling was determined as
a function of burnup for dispersion-form U3Si2 [5]. From this data, an empirical model of swelling as
a function of burnup was determined for use with pellet-form U3Si2 in BISON. This model was used
in a BISON simulation of a U3Si2 pellet and compared with the performance of a UO2 pellet [9].
The swelling for the U3Si2 and UO2 is shown in Figure 2. The BISON simulations predict that the
swelling of the U3Si2 is significantly greater than that of UO2. This increased swelling would result
in earlier contact between the pellet and the cladding, leading to greater mechanical degradation
of the cladding and increased probability of cladding rupture.
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Figure 2: Comparison of U3Si2 and UO2 swelling and densification volumetric fuel strain contribu-
tions [9].

Although these simulations indicate that swelling could indeed be a significant issue in U3Si2
fuel, it is unknown whether the swelling of dispersion fuel is representative of swelling that would
be encountered in pellet fuel. Additionally, dispersion-form U3Si2 undergoes fission-induced amor-
phization [5], which may also strongly influence swelling. However, it is believed that the much
higher operating temperatures of pellet-form fuel may prevent fission-induced amorphization.

The goal of this work is to predict the swelling of U3Si2 fuel using a multi-scale computational
approach. The microstructural evolution of the fission gas bubbles is simulated using a phase-field
model. Because very little experimental data is available for this system, the phase-field model is
parameterized primarily using lower-length scale simulations. Density functional theory (DFT) cal-
culations are used to determine diffusion coefficients, formation energies, and mechanical properties
of the solid phase. To facilitate molecular dynamics (MD) calculations, a new interatomic potential
for the U-Si system was developed based on the modified embedded atom method (MEAM). This
potential is used to calculate other parameters required for the phase-field model, such as grain
boundary energy and solid-bubble surface energy. Using the phase-field model, microstructural
evolution of intragranular and intergranular bubbles is simulated, and swelling is calculated based
on the assumption that swelling is equal to volume fraction of bubbles. The microstructure is
divided into regions where either intragranular and intergranular bubbles are predominant, and the
total swelling is calculated using a volume fraction weighted average of swelling in the two regions.
Following presentation of the results, limitations of the present approach are discussed and future
improvements are proposed.
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2 Computational Models

2.1 U-Si MEAM interatomic potential
Very few interatomic potentials have been constructed for uranium-based alloys. This is due to
the inherent difficulty in describing the behavior of f-electrons and the mechanical instability of the
γ phase of uranium at low temperatures. Several interatomic potentials have been developed for
pure uranium [10, 11, 12, 13, 14, 15], with only a few being adapted into alloy potentials for U-Zr
[16], U-Al [17] and U-Mo [18]. Based on the functionality of the modified Embedded-Atom Method
(MEAM) variants of U and U-Zr [10, 16] as well as their inclusion of fission gases Xe, Kr and He
[11], it is determined that this is a suitable potential form to pursue in attempting to describe the
U-Si system.

This work presents a MEAM interatomic potential for the description of the U-Si system, with
particular emphasis on U3Si2. No interatomic potentials for the U-Si system have been constructed
prior to this work.

2.1.1 MEAM Theory
The Embedded-Atom Method (EAM) [19, 20, 21] has been shown to predict the properties of alloys
and metals quite well. The EAM is the most widely used semi-empirical potential, with applications
including calculations of point defects [22], melting [23], grain boundary structure and energy [24],
dislocations [25] [40], segregation [26], fracture [27] and surface structure [28]. The basis of the
EAM is that the cohesive energy can be expressed in terms of embedding energies. In this view,
each atom in the metal is embedded into the electron gas created by the other atoms. The EAM
provides a robust means of calculating structure and energetics; however, it is best suited strictly
for purely metallic systems with no directional bonding. From the EAM, the total energy of a
system of atoms is given by equation 1:

E =
∑
i

{F (ρ̄i) +
1

2

∑
j �=i

Sijφ(Rij)} (1)

where i and j are the individual atoms of the model [21, 19]. The pair interaction between
atoms i and j is given by φ [29] and is dependent on the separation between the atoms Rij .

φ(R) =
2

Z

{
Eu(R)− F (

ρ̄0(R)

Z
)
}

(2)

In equation 2, Z is the number of first neighbors, ρ̄0(R) is the background electron density and
Eu(R) is the per atom energy of the reference structure as a function of nearest-neighbor distance
R [30] obtained from the universal equation of state of Rose et al. [28] given in equation 3.

Eu(R) = −Ec(1 + a∗ + δ × (
re
r
)× (a∗)3)e(−a∗) (3)

with

a∗ = α(
R

re
− 1) (4)

and

α2 =
9ωB

Ec
(5)
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where Ec, re, ω and B are the cohesive energy, nearest neighbor distance, atomic volume and
bulk modulus, respectively, evaluated at equilibrium in the reference structure. The background
electron density is given by:

ρ̄0(R) = Zρa(0)(R) (6)

where ρa(0) is an atomic electron density discussed below. The embedding function, F, is given
in equation 7 and is the energy required to embed atom i into a system with a background electron
density ρ̄i.

F (ρ̄) = AEc
ρ̄

Z
ln

ρ̄

Z
(7)

The modification to the EAM is a function of how the electron density at a certain point, ρi,
is calculated. In the traditional EAM, ρi is simply the linear supposition of spherically averaged
atomic electron densities:

ρ
(0)
i =

∑
j �=i

ρ
a(0)
j (Rij) (8)

whereas the MEAM introduces angularly dependent terms to augment ρ̄i as shown in equation
9 through equation 11 [30, 31].

(ρ
(1)
i )2 =

∑
α

{
∑
j �=i

xαijρ
a(1)
i (Rij)}2 =

∑
j,k �=i

ρ
a(1)
j (Rij)ρ

a(1)
k (Rik)cos{θijk} (9)

(ρ
(2)
i )2 =

∑
α,β

{
∑
j �=i

xαijx
β
ijρ

a(2)
j (Rij)}2 − 1

3

∑
j �=i

[ρ
a(2)
j (Rij)]

2 (10)

(ρ
(3)
i )2 =

∑
α,β,γ

{
∑
j �=i

xαijx
β
ijx

γ
ijρ

a(3)
j (Rij)}2 − 3

5

∑
j �=i

[ρ
a(3)
j (Rij)]

2 (11)

Here, the ρa(l) are the atomic densities which represent the decrease in the contribution with
distance Rij and the α, β, γ summations are each over the three coordinate directions with xαij
being the distance the ratio Rα

ij/Rij with Rα
ij being the α component of the distance vector between

atoms i and j [29]. Similar to equation 9, equations 10 and 11 can be put in a form that has a
dependence on the angle between atoms i, j and k (θijk), and this has been done by Baskes et al.
[32]. Atomic electron densities are assumed to decrease exponentially,

ρ
a(l)
i (R) = e[−β(l)( R

re
−1)] (12)

where β(l) are the decay constants. To obtain the background electron density from the partial
electron densities we make the assumption that the angular terms are a small correction to the
EAM.

ρ̄2 =
3∑

l=0

t̄
(l)
i (ρ

(l)
i )2 (13)

where the t̄
(l)
i [33] are combinations of model constants tl that are associated with the atom

types of neighbors i.
Many body screening is implemented through a screening function, Sij , that quantifies screening

between two atoms i and j due to other atoms in the system, k. The atomic electron densities and
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the pair potential are multiplied by this function. The screening function depends on all other
atoms in the system:

Sij = Πk �=i,jSijk (14)

where Sijk is calculated using a simple geometric construction. The screening factor Sijk is
defined as:

Sijk = fc

[
C − Cmin

Cmax − Cmin

]
(15)

where C is a geometric parameter, and Cmin and Cmax are limiting values of C. The smooth
cutoff function is:

fc(x) =

⎧⎪⎨
⎪⎩
1 x ≥ 1

[1− (1− x)6]2 0 < x < 1

0 x ≤ 0

(16)

A radial cutoff function is also applied to the atomic electron densities and pair potential which
is given by fc[(rc − r)/λ] where rc is the cutoff distance of 6 Å and λ gives the cutoff region and
was chosen to be 0.1 Å. The MEAM has been shown to accurately predict the behavior of complex
systems such as plutonium [30] and tin [34]. It should be noted that these equations are for a single
component system and can be generalized for a multicomponent system, as was done in [35].

2.1.2 Fitting Procedure
In order to create a functional uranium-silicide (U-Si) binary interatomic potential, there must first
exist (or be generated) suitable potentials for each individual element. A uranium potential from
Moore, et al. [16] is utilized in the fitting. This MEAM interatomic potential performs excellently
in describing the body-centered cubic phase of uranium and the alloy behavior of UZr.

For the Si MEAM contribution, the initial potential utilized was from Baskes [29]. Upon finding
this potential over-predicted the Si-Si dimer distance (compared to the reference value of 2.25 Å[36]),
underestimated the melting point and overestimated the thermal expansion, the fitting of a new
Si-Si potential was undertaken in an attempt to rectify these discrepancies. Allowing all MEAM
parameters to vary, the Si MEAM potential was fit to targets of the elastic constants, vacancy
formation energy, thermal expansion, a theoretical face-centered cubic structure, a Si-Si dimer and a
quenched melted structure. This modified Si MEAM potential increased the melting point, slightly
decreased the dimer distance and decreased the thermal expansion without significant degradation
of 0 K pure diamond cubic Si properties. This potential was then utilized in the development of a
U-Si MEAM binary potential.

The fitting procedure to develop cross-species parameters (U-Si interactions) involves a reference
phase (L12-U3Si), a starting guess for MEAM parameters, and is then refined via a script that
gives a random step to all relevant MEAM parameters. This updated potential is then input into
LAMMPS [37] and a series of simulations are performed, the output of which is utilized to calculate
a weighted-error summation. The script then either accepts or rejects the prescribed changes to the
MEAM parameters based on the reduction of the total weighted-error. The emphasis of the fitting
procedure was the U3Si2 phase, which possesses a relatively complex crystal structure, with a 10
atom unit cell in space group P4/mbm-No. 127, two unique uranium atomic sites (2a (0, 0, 0) and
4h (0.181, 0.681, 0.5) ) and one unique silicon atomic site (4g (0.389, 0.889, 0) ), as first reported
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by Zachariasen [38]. The cohesive energy, lattice constants and elastic constants of the U3Si2
phase were given priority with respect to the error weighting, and are thus considered the primary
fitting targets. Additionally, a number of alternative structures were discovered throughout the
fitting procedure via a heating and quenching simulation. Up to eight alternative structures were
included as fitting targets at a given time, enforcing the condition that these structures exhibited
a higher energy than the experimental structure. A variety of other simulations were performed
periodically to serve as sanity checks for the potential, examples of which include a heating and
cooling stage, inclusion of defects and investigation of other U-Si theoretical phases, but these were
not included as fitting targets. In this primary fitting stage, only cross-species parameters were
allowed to vary.

Upon completion of the primary fitting stage, a full examination of the potential’s strengths
and weaknesses was performed, investigating not only the accuracy of the fitting targets, but the
ability of the potential to predict the defect properties of U3Si2, the relative formation energy of
a variety of other U-Si phases and the melting point of U3Si2. A secondary fitting stage was then
undertaken that included select dilute defect formation energies as fitting targets, in addition to the
targets in the primary fitting stage. In this secondary stage, the variation of MEAM parameters
was not restricted to only U-Si cross species parameters, but all pure Si MEAM parameters were
also given the freedom to change. This modification was motivated by the lack of importance in
accurately predicting pure Si properties, especially in a system that is U-rich, as high Si content
phases will not exist in these nuclear fuel systems. In this way, the potential was fine tuned to
more accurately reflect defect properties, while retaining accuracy in predicting the energetics and
elastic properties of U3Si2.

The final Si MEAM potential is shown in Table 1 alongside the U MEAM potential for clarity.
The U-Si MEAM cross-species potential parameters are shown in Table 2. Screening parameters
are given in LAMMPS format (i.e., Cmax(I,J,K) is a screening parameter when I-J pair is screened
by K, where I, J and K are atom types).

Parameter Si-MEAM U-MEAM

attrac -0.2073 0.105
repuls -0.1876 0.105
alpha 5.5576 5.5
β0 4.0501 4.8
β1 5.6911 6
β2 4.5856 6
β3 5.5305 6

alat (Å) 5.431 4.28
Ec (eV) 4.63 5.27

A 0.829 0.98
t0 1 1
t1 2.0601 2.5
t2 4.6769 4.0
t3 -1.3216 1.2

Cmin 0.9666 1.0
Cmax 2.7994 1.9

Table 1: Silicon and Uranium MEAM potential parameters
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Parameter U-Si MEAM

Ec (eV) 5.36
re (Å) 3.05
lattce l12
rc (Å) 6.0
attrac -0.1129
repuls 0.2171

alpha(1,2) 4.793
rho(2) 1.0727
rho(1) 1

Cmin(1,1,2) 0.985
Cmax(1,1,2) 2.313
Cmin(1,2,1) 0.385
Cmax(1,2,1) 1.974
Cmin(1,2,2) 0.926
Cmax(1,2,2) 2.718
Cmin(2,2,1) 1.175
Cmax(2,2,1) 1.435

Table 2: Uranium-silicon MEAM potential parameters. Uranium is atom type 1 and silicon is atom
type 2.

For the sake of clarity and reproducibility, LAMMPS MEAM-specific parameters are included
in Table 3. It should also be noted that a non-standard implementation of MEAM within LAMMPS
(which relates to modification of the smooth cutoff function) was utilized for the existing U MEAM
potential and the subsequent U-Si potentials.

Parameter U-Si MEAM

bkgd dyn 1
nn2 1

delr (Å) 0.1
ialloy 1
augt1 0

emb lin neg 1

Table 3: LAMMPS MEAM-specific parameters [37].

2.2 Phase-field model of fission gas bubble evolution
The microstructure of the fuel consists of multiple grains of U3Si2 fuel and both intragranular and in-
tergranular fission gas bubbles. A new phase-field model was developed within MOOSE/MARMOT
to simulate the evolution of this microstructure. In the phase-field model, the microstructure is
represented with a set of order parameters. For a microstructure consisting of p grains, the in-
dividual grains of the fuel matrix are represented by a set of order parameters ηm1, ηm2, . . . , ηmp.
Each fission gas bubble is crystallographically indistinguishable from the others, so the bubbles are
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represented by a single order parameter ηb0. Within the interior of grain i of the fuel, ηmi = 1,
ηmj = 0 ∀j �= i, and ηb0 = 0. Within the bubble phase, ηb0 = 1 and ηmj = 0 ∀j. Interfaces between
grains are represented by a smooth variation of the order parameters.

In addition to the local crystal structure, the local concentration of defect species is also needed
to describe the microstructure. In the present model, we assume that the dominant defect species
are U vacancies and fission gas atoms on U lattice sites. Both U vacancies and interstitials are
produced by collision cascades; however, interstitials are much more mobile and therefore diffuse
to sinks much more rapidly than vacancies. Therefore, there is a net formation of vacancies which
can be represented by a source term for net vacancy production. For fission gas atoms on U lattice
sites, the formation of bubbles is driven by the low-solubility Xe and Kr atoms. We assume that
the properties of all insoluble fission gas atoms can be described by the properties of Xe atoms on U
sites, since Xe production occurs at a rate nearly ten times that of Kr [39]. The density of vacancies
and gas atoms are represented by variables ρv and ρg, respectively, with units of number of defects
per unit volume. These quantities can be converted to the local composition (mole fraction) c of
the U lattice using c = ρVa, where Va is the atomic volume occupied by a U atom in the U3Si2
crystal structure. Va was calculated to be 0.03629 nm3 at 800 K by dividing the unit cell volume
of 0.21774 nm3 (calculated from experimental data) by 6 U atoms in the unit cell.

2.2.1 Grand potential functional
To derive the evolution equations for the microstructure, the total grand potential Ω of the system
is written as a function of the local grand potential density:

Ω =

∫
V

(
m

⎡
⎣∑

α

pα∑
i=1

(
η4αi
4

− η2αi
2

)
+

∑
α

pα∑
i=1

⎛
⎝∑

β

pβ∑
j=1,αi �=βj

γαiβj
2

η2αiη
2
βj

⎞
⎠+

1

4

⎤
⎦

+
κ

2

∑
α

pα∑
i=1

|∇ηαi|2 +
∑
α

hαωα

)
dV

(17)

where α and β are indices for phases, i and j are indices for grains of each phase, pα and pβ are the
number of grains of phase α and β, m is a constant free energy barrier coefficient, κ is the gradient
energy coefficient (considered to be independent of interface orientation and misinclination here),
and the set of constant coefficients γαiβj allow the adjustment of interfacial energies between phases
and grains. ωα is the local grand potential density of each phase, and hα is an switching function
for phase α that has value hα = 1 in phase α and hα = 0 in all other phases. The switching function
was introduced in Ref. [40] and has the form

hα =

∑pα
i=1 η

2
αi∑

β

∑pβ
i=1 η

2
βi

(18)

For the matrix and bubble phases, the switching functions reduce to

hm =

∑p
i=1 η

2
mi

ηb0 +
∑p

i=1 η
2
mi

(19)

hb =
ηb0

ηb0 +
∑p

i=1 η
2
mi

(20)

The grand potential density for each phase is given by

ωm = fm − μgρg − μvρv (21)
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ωb = fb − μgρg − μvρv (22)

where fm and fb are the Helmholtz free energies of each phase and μg and μv are the chemical
potentials of the gas atoms and vacancies, respectively. The Helmholtz free energies are given by

fm = fm,chem + fm,el (23)

fb = fb,chem + fb,el (24)

where fm,chem and fb,chem are the chemical energy contributions, and fm,el and fb,el are the elastic
energy contributions.

2.2.2 Chemical energy contribution and parameterization
The bulk chemical free energy density of the matrix phase, fm,chem, is considered first. Assuming
that the chemical energy of the matrix can be approximated as an ideal solution, the Helmholtz
free energy density is written

fm,ideal =
1

Vm

{
RT [cv ln cv + (1− cv) ln (1− cv)] +NAE

f
v cv

+RT [cg ln cg + (1− cg) ln (1− cg)] +NAE
f
g cg

} (25)

where Vm is the molar volume, R is the ideal gas constant, Vm = VaNA, NA is Avogadro’s number,
Ef

v is the formation energy of a U vacancy, and Ef
g is the formation (incorporation) energy of a gas

(Xe) atom on a U lattice site. As determined from DFT calculations, Ef
v = 0.68 eV and Ef

g = 3.6
eV. To simplify the numerical solution of the governing equations, fm,ideal was approximated with
a parabolic function:

fm,chem =
1

2
kmv (cv − cm,eq

v )2 +
1

2
kmg (cg − cm,eq

g )2 (26)

where kmv and kmg are the curvatures of the parabolas and cm,eq
v and cm,eq

g are the equilibrium
composition of vacancies and gas atoms in the U3Si2 matrix. The equilibrium compositions are
determined from the formation energies and temperature using cm,eq

v = exp (−Ef
v /kBT ) and cm,eq

g =

exp (−Ef
g /kBT ). The curvatures of the parabolas are set by assuming that at the steady-state

vacancy composition during reactor operation, c0v, the chemical potential determined from the
parabolic approximation is equal to the chemical potential of the ideal solution model. Since
μ = ∂f

∂ρ = ∂f
∂c

∂c
∂ρ = Va

∂f
∂c ,

Va
∂fm,chem

∂cv

∣∣∣∣
c0v

= Va
∂fm,ideal

∂cv

∣∣∣∣
c0v

(27)

This leads to an expression for kmv , assuming c0v = 5× 10−3:

kmv =
1

(c0v − cm,eq
v )

[
RT

Vm
[ln c0v − ln (1− c0v)] +

NAE
f
v

Vm

]
= 1.41× 1011 J/m3 (28)

For simplicity, it is assumed that kmg = kmv .
The bulk chemical free energy density of the gas bubble phase, fb,chem, is considered separately

for the intragranular and intergranular bubbles. In both cases, the bubble phase is considered to be
a mixture of vacancies and gas atoms with no U atoms present. For the intergranular bubbles, it is
assumed that because the bubbles are expected to be much larger, the curvature of their surfaces
is relatively small, and thus Gibbs-Thomson effect is small, so their composition is not significantly
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Figure 3: Left, the Gibbs triangle representation of composition of the U lattice sites. The corners
correspond to 100% U atoms, vacancies, and Xe atoms. Along the Vac-Xe edge, no U atoms are
present, so cg + cv = 1. Right, the Helmholtz free energy of the gas phase is plotted along the
Vac-Xe edge using Eq. (29), with cg = 0 corresponding to the pure vacancy corner and cg = 1
corresponding to the pure Xe corner.

different from the composition obtained for a flat matrix-bubble interface. The bubble phase can
be approximated as a van der Waals gas [39], in which the gas atoms are assumed to have a hard-
sphere exclusion volume characterized by the parameter b. For Xe, b = 0.085 nm3/atom [39]. The
Helmholtz free energy density of a van der Waals gas is [41]:

fb,vdW = ngkT

⎡
⎣ln

⎛
⎝ 1

nQ

(
1
ng

− b
)
⎞
⎠− 1

⎤
⎦+ f0 (29)

where ng is the number density of gas atoms, nQ =
(
mkBT
2π�

)3/2
is the quantum concentration, m

is the mass of a Xe atom, and f0 is the offset to ensure that the solid and gas free energies are
measured relative to the same reference state. ng can be put in terms of relevant problem variables
using ng = cgnU (where nU = 1/Va is the number density of U atoms in the U3Si2 lattice) as long
as cv + cg = 1 holds. f0 is determined by setting the gas and solid phase free energies equal when
they are in the same reference state, which is chosen to be the state in which all U sites are occupied
by vacancies. In this case, Eq. 25 yields fm,ideal(cv = 1, cg = 0) = Ef

v /Va = 3.00× 109 J/m3 for the
solid phase. By setting fm,ideal = fb,vdW (cv = 1, cg = 0), f0 = 3.00× 109 J/m3.

The free energy of the gas phase can be more easily understood by considering the Gibbs triangle
representing the composition of U lattice sites in Figure 3. The corners of the triangle represent
100% U atoms, vacanices, and Xe atoms, and are labeled accordingly. The corner corresponding
to 100% vacancies is the reference state for measuring the solid and gas phase free energies, as
discussed in the previous paragraph. Along the edge linking the Vac and Xe corners, no U is
present, so cv + cg = 1. Thus, along this edge, the Helmholtz free energy of the gas phase is given
by Eq. (29). A plot of Eq. (29) along that edge is also shown in Figure 3.

As seen in Fig. 3, fb,vdW increases dramatically when cg > 0.42. This occurs as 1
ng

−b approaches
0, and corresponds physically to the density at which the volume occupied by a Xe atom approaches
the hard sphere exclusion volume b. By setting 1

ng
− b = 1

cgnU
− b = 0, it can be determined that
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fb,vdW → ∞ as cg → 0.42694. To prevent numerical difficulties associated with compositions
exceeding this value, for phase-field simulations a parabolic approximation was fit to the Helmholtz
free energy:

fb,chem =
1

2
kbv(cv − cb,eqv )2 +

1

2
kbg(cg − cb,eqg )2 + fmin (30)

The minimum of the parabolic free energy was set to occur at the minimum of the van der Waals
free energy, resulting in cb,eqg = 0.3924, cb,eqv = 0.6076. This composition is found along the Vac-Xe
edge of the Gibbs triangle in Fig. 3. To match the value of minimum of the van der Waals free
energy, fmin = 1.60× 109 J/m3. Because composition in the gas bubbles will generally not deviate
far from the minimum of the free energy, kbv and kbg were set by assuming kbv = kbg and fitting to

fb,vdW in the range 0.36 < cg < 0.42, resulting in kbv = kbg = 8.0× 1010 J/m3.

2.2.3 Interfacial energy and parameterization
As described in Section 3, the interfacial energy between the matrix and gas bubble phase was
calculated to be σmb = 1.7 J/m2, and a representative grain boundary energy was determined to be
σmm = 1.2 J/m2. For an intergranular bubble, this results in a semi-dihedral angle of 69.3◦. The
phase-field model is parameterized so that these interfacial energies are accurately represented.

Using the grand potential functional of Eq. (17), the interfacial energy σαiβjbetween grain i of
phase α and grain j of phase β is given by [42, 40]

σαiβj = g(γαiβj)
√
κm (31)

where g(γαiβj) is a dimensionless function of γ that in general must be evaluated numerically.
However, for the special case γ = 1.5, g(γ = 1.5) =

√
2/3. For this special case, analytical

expressions can be used that relate κ and m to the interfacial energy and characteristic thickness
lint of the interface [42, 40]:

κ =
3

4
σmblint (32)

m =
6σmb

lint
(33)

For the intragranular bubbles, only a single order parameter ηm0 is required, and we set γm0b0 =
1.5. lint is chosen to be 2.83 nm, and applying Eq. (32) and (33), κ = 3.61 × 10−9 J/m and
m = 3.60× 109 J/m3

To resolve the intergranular bubbles, lint is chosen to be 30 nm, σmb = 1.2 J/m2, and we choose
the interface between any grain i of the matrix phase and the bubble phase to have γmib0 = 1.5,
resulting in κ = 3.83 × 10−8 J/m and m = 3.40 × 108 J/m3 for the simulations of intergranular
bubbles. To control the grain boundary energies, since κ and m are fixed, the parameters γmimj

must be determined to obtain the correct value of σmm, which is assumed to be constant and
isotropic for all interfaces between grains i and j. To determine the value of γmimj , using Eq. (31),

σmb = g(γmib0)
√
κm (34)

σmm = g(γmimj)
√
κm (35)

Dividing Eq. (34) by Eq. (35),
σmb

σmm
=

g(γmib0)

g(γmimj)
(36)
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Rearranging Eq. (36),

g(γmimj) = g(γmib0 = 1.5)
σmm

σmb
=

√
2

3

1.2

1.7
= 0.333 (37)

A polynomial approximation has been fit to numerical results that allows γ to be found as a function
of g [43]:

γ =
(−5.288g8 − 0.09364g6 + 9.965g4 − 8.813g2 + 2.007

)−1
(38)

Using this approximation, γmimj = 0.818.

2.2.4 Elastic energy and parameterization
The hydrostatic pressure in the fission gas bubbles is exerted on the surrounding fuel matrix,
resulting in elastic energy in the fuel. This elastic energy contributes to Eq. (17) and therefore
influences microstructural evolution. To incorporate fission gas bubble pressure into the phase-field
models, an equivalent inclusion approach has been used in the past for simulations of spherical
intragranular bubbles [44]. However, the equivalent inclusion approach requires the calculation of
the Eshelby tensor [45]. Though this is feasible for ellipsoidal shapes, to our knowledge a solution
to the Eshelby tensor for the lenticular shape of intergranular bubbles does not exist. Thus, we
have developed a new approach to including hydrostatic gas pressure in bubbles with arbitrary
shape, as detailed in this section.

The elastic energy contributes to the Helmholtz free energy of each phase, as shown in Eq. (23)
- (24). fm,el has the usual form for a linear elastic solid:

fm,el =
1

2
σm
ij εij (39)

where σm
ij is the stress tensor in the matrix and εij is the strain tensor, defined as

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(40)

where ui is ith component of displacement and xi is the ith coordinate direction. The stress tensor
for the matrix phase has a linear elastic constitutive law

σm
ij = Cm

ijklεkl (41)

where Cm
ijkl is the stiffness tensor for U3Si2. The components of the stiffness tensor were taken from

Ref. [46] and are shown in Table 5.
For the gas phase, we assume it can be treated as a highly compliant solid, as has been done

previously in phase-field modeling of solid-gas systems [47, 48, 49]. The elastic energy is given by

fb,el =
1

2
σb
ijεij (42)

The stress field in the bubble phase is given by the hydrostatic pressure of the gas phase plus a
small contribution from a linear elastic constitutive law:

σb
ij = σg

ij + Cb
ijklεkl (43)

The contribution from the linear elastic constitutive law ensures that the displacement field does not
become strongly discontinuous through the solid-gas interface. To ensure that it gives a negligible
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contribution to elastic energy, we set Cb
ijkl = 10−4Cm

ijkl. The stress tensor from the gas pressure σg
ij

is related to the hydrostatic pressure in the bubble P as

σg
ij =

{
−P i = j

0 i �= j
(44)

Although in principle the gas pressure varies with the bubble phase gas composition cg, we assume
that for intergranular bubbles, cg will not deviate significantly from its value at the minimum of
gas the free energy curve in Fig. 3, and thus that P can be approximated as a constant set by the
pressure corresponding to ceqg = 0.3924. From the data of Ref. [50], at cg = 0.3924, P = 450 MPa.

To solve for the displacement fields, the mechanical equilibrium equation must be solved simul-
taneously with the evolution equations. In the weak form, the mechanical equilibrium equation
is ∫

V
wi,jσijdV = 0 (45)

where the wi is the ith finite element shape function, wi,j is the derivative of the ith shape function
in the jth direction. To calculate the stress tensor at each position in Eq. (45), we interpolate the
stress tensor for each phase using the previously defined interpolation functions hm and hb:

σij = hbσ
b
ij + hmσm

ij (46)

This scheme, in which the strain is assumed constant between phases in the interface and the stress
is interpolated as a function of order parameter, has been referred to as the Voight-Taylor scheme
and has been previously applied in phase-field modeling [51, 52, 53, 54].

2.2.5 Evolution equations
From the grand potential functional of Eq. (17), the Allen-Cahn equations for evolution of the order
parameters can be derived:

∂ηαi
∂t

=− L
δΩ

δηαi

∂ηαi
∂t

=− L

[
m

⎛
⎝η3αi − ηαi + 2ηαi

∑
β

pβ∑
j=1,αi �=βj

γαiβjη
2
βj

⎞
⎠

− κ∇2ηαi +
∑
α

∂hα
∂ηαi

ωα

]
(47)

where δΩ
δηαi

is the variational derivative of Ω with respect to order parameter ηαi and L is the
order parameter mobility, which in general is a function of order parameters and concentration.
Parameterization of L will be discussed later in this section. For intragranular bubbles, to simulate
the effect of re-solution of fission gas atoms from the gas bubbles to the fuel matrix due to collisions
with energetic fission fragments, a reaction term is added to the Allen-Cahn equation for ηb0,
proportional to the re-solution rate b and limited to the bubble-matrix interface by the polynomial
η2b0(1 = ηb0)

2:
∂ηb0
∂t

= −L
δΩ

δηb0
− 2bηb0(1− ηb0)

2 (48)

To evolve the gas and vacancy concentrations, it will be more convenient to write the evolution
equations in terms of chemical potentials μv and μg and use the chemical potentials as the field
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variables rather than compositions. To enable this, the grand potentials in each phase, Eq. (21)
- (22), must be expressed in terms of μv and μg for use in Eq. (47). For the matrix phase, the

relation μg = Va
∂fm,chem

∂cg
= Vak

m
g (cg − cm,eq

g ) can be re-arranged to yield

cg =
μg

Vakmg
+ cm,eq

g (49)

Similarly,

cv =
μv

Vakmv
+ cm,eq

v (50)

Eq. (49) - (50) can be used in conjunction with the relations ρg =
cg
Va
, ρv = cv

Va
, Eq. (21), (23),

and (26) to obtain the grand potential density as a function of chemical potentials rather than
concentrations:

ωm = −1

2

μ2
v

V 2
a k

m
v

− μv

Va
cm,eq
v − 1

2

μ2
g

V 2
a k

m
g

− μg

Va
cm,eq
g + fm,el (51)

Similarly, the grand potential density of the bubble phase can be expressed as

ωb = −1

2

μ2
v

V 2
a k

b
v

− μv

Va
cb,eqv − 1

2

μ2
g

V 2
a k

b
g

− μg

Va
cb,eqg + fb,el (52)

The evolution equations for μg and μv are

∂μg

∂t
=

1

χg

[
∇ · (Dgχg∇μg) + sg −

∑
α

pα∑
i=1

∂ρg
∂ηαi

∂ηαi
∂t

]
(53)

∂μv

∂t
=

1

χv

[
∇ · (Dvχv∇μv) + sv −

∑
α

pα∑
i=1

∂ρv
∂ηαi

∂ηαi
∂t

]
(54)

where χg and χv are the susceptibilities, Dg and Dv are the diffusion coefficients, and sg and sv
are the source terms for production of Xe atoms and U site vacancies.

The source term sg = s0ghm is given by a constant rate of Xe production, s0g, times the switching
function hm, which has a value of 1 in the fuel matrix and zero inside the bubble. This is to limit
production of new Xe atoms to the fuel matrix in the model. The Xe production rate s0v = Ḟ YXe,
where Ḟ is the fission rate density and YXe is the fission yield of Xe. Ḟ is estimated to be 1.26×1013

fissions/(cm3 s) based on typical operating values for a light water reactor [39], scaled up to account
for the increased U site density of U3Si2 compared with UO2. YXe is taken to be 0.2156 based on
the thermal neutron Xe yield for U-235 [55]. The vacancy production rate is similarly given by
sv = s0vhm. s0v is assumed to be 10s0g.

The susceptibility χ describes the relationship between solute density and its chemical potential:
χ = ∂ρ

∂μ [56]. This relationship differs based on the phase of the system, so χ is interpolated based
on the local phase using the switching functions hα. For gas atoms,

χg = hmχm
g + hbχ

b
g (55)

where χm
g =

∂ρmg
∂μg

and χb
g =

∂ρbg
∂μg

. Since the governing equations are in terms of the chemical
potentials, the susceptibilities must also be expressed in terms of chemical potentials, which can

be done as follows. Using ρmg =
cg
Va
, and substituting for cg using Eq. (49), χm

g =
∂ρmg
∂μg

= 1
V 2
a kmg

.

Similar expressions can be derived for χm
v , χb

g, and χb
v, resulting in

χg = hm
1

V 2
a k

m
g

+ hb
1

V 2
a k

b
g

(56)

14



χv = hm
1

V 2
a k

m
v

+ hb
1

V 2
a k

b
v

(57)

The diffusion coefficients are calculated from the prefactor and migration energy for each species.
These quantities have been calculated using first-principles techniques, resulting in D0,g = 2.32 ×
10−6 m2/s and Emig,g = 1.55 eV for Xe atoms and D0,v = 3.09× 10−6 m2/s and Emig,v = 1.22 eV
for U vacancies [57].

Dg = D0,g exp
−Emig,g

kBT
= 400

nm2

s
(58)

Dv = D0,v exp
−Emig,v

kBT
= 6.37× 104

nm2

s
(59)

The governing equations are non-dimensionalized using length scale l∗ = 1 nm, time scale τ∗ = 1
s, and energy density scale E∗ = C44 = 63×109 J/m3. Finally, we describe the parameterization of
the order parameter mobility L. In the simulation configuration used, the grain boundaries between
fuel matrix grains are static, and the change in microstructure is only due to the motion of matrix-
bubble interfaces. We assume the motion of the matrix-bubble interfaces is diffusion-limited, and
set the non-dimensionalized order parameter mobility L̄ for all order parameters so that it has they
same order of magnitude as the non-dimensionalized chemical mobility M̄ = D̄χ̄ of the slowest-
diffusing species, the gas atoms. This ensures that the motion of the matrix-bubble interface is
diffusion controlled. Using this approach, D̄g = 400 and χ̄v ∼ 102, so we set L̄ = 4.0× 104. This is
equivalent to a dimensional value L = 6.35× 10−7 m3/(J s).
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Parameter Value

T 800 K

Va 0.03629 nm3

Ef
v 0.68 eV

Eg
v 3.6 eV

cb,eqg (intergranular) 0.3924

cb,eqv (intergranular) 0.6076

cb,eqg (intragranular) 0.2

cb,eqv (intragranular) 0.8

kmv = kmg 1.41× 1011 J/m3

kbv = kbg 8.0× 1010 J/m3

fmin 1.60× 109 J/m3

κ (intergranular) 3.83× 10−8 J/m

m (intergranular) 3.40× 108 J/m3

κ (intragranular) 3.61× 10−9 J/m

m (intragranular) 3.60× 109 J/m3

γmib0 1.5

γmimj 0.818

P 450 MPa

Ḟ 1.26× 1013 fissions/(cm3 s)

YXe 0.2156

s0g 2.72× 1012 atoms/(cm3 s)

s0v 2.72× 1013 vacancies/(cm3 s)

Dg 400 nm2/s

Dv 6.37× 104 nm2/s

L 6.35× 10−7 m3/(J s)

b 10−3/s

Table 4: Parameters used for phase-field simulations.
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3 U-Si MEAM Potential Results

The results for fundamental properties of U3Si2 at 0 K are displayed in Table 5 and compared to
experiments [38, 58] and DFT calculations [46] (DFT+U results from [46] are used for comparison
but are simply referred to as DFT here). For the U-Si MEAM potential, the formation energy
is very accurate while the volume per atom is slightly underestimated. The a lattice constant
is underestimated and the c lattice constant is slightly overestimated. The elastic constants show
varying degrees of agreement with DFT predictions. Excellent agreement is shown for Gxz (equation
61), C33 and C66, but significant variance is observed for C12, for example. The resulting bulk
modulus, calculated via the elastic constants in equation 62, is overestimated. The bulk modulus
was also calculated via the Birch-Murnaghan curve [59, 60], yielding a value of 134.5 GPa, which
is consistent with the calculation of the bulk modulus via elastic constants. There is observed a
general over-stiffness prediction of the elastic constants. The root-mean-square error over the nine
calculated elastic constants is 55.0 GPa.

Gxy =
C11+C22

2 − C12

2
(60)

Gxz =
C11+C33

2 − C13

2
(61)

B = (C11 + C22 + C33 + 2 ∗ C12 + 2 ∗ C13 + 2 ∗ C23)/9 (62)

Reference U-Si MEAM

E -0.3562 -0.335
V/at 20.8441 20.355
a 7.321 7.078
c 3.891 4.063
c/a 0.5311 0.574
C11 1493 210.2
C33 1393 160.2
C12 493 178.9
C13 483 65.8
C44 633 103.1
C66 463 35.4
B 813 134
Gxy 503 16
Gxz 483 60

Table 5: Properties of U3Si2 at 0 K. Results from the MEAM U-Si potential are compared
to experiments1[38]2[58] and DFT3[46] calculations. Units are as follows: E (eV/atom), V/at
(Å3/atom), a and c (Å), Cxx, B and G (GPa).

The U3Si2 structure is shown in Figure 4 [38]. This figure illustrates a supercell of 2×2×3 unit
cells with periodic boundaries. In comparing the experimental structure to the predicted structures
from the MEAM potential, minute differences are observed. There is a slight expansion of uranium
atoms (red) in the purely uranium plane and a minuscule clockwise rotation of atoms in the unit
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cell, with respect to the experimental structure. This alteration is nearly imperceptible, except by
analyzing the radial distribution function (RDF), as shown in Figure 5. The RDF shows that the
predicted structure from the MEAM potential is not capturing the smallest interatomic distance;
this is due to the slight expansion in the U plane and the clockwise rotation of U and Si atoms.
These minor distortions slightly increase the first nearest neighbor distance (Si-Si) by approximately
0.2 Å and slightly decrease the second and third nearest neighbor distances, as shown in Figure 5
in the distance regime of 2.8-3 Å.

Figure 4: (100) view (left) and (001) view (right) of the experimental structure of U3Si2. Uranium
atoms in red; silicon atoms in blue.

Figure 5: Radial distribution functions of U3Si2, comparing the MEAM predicted structures with
the experimental structure.
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Moving beyond the perfect crystal, the next step in testing the accuracy of the potential is to
investigate point defects. Single point defects (vacancy, interstitial, anti-site) were considered as a
means of accommodating a change in stoichiometry. The methodology for calculating point defect
energetics is outlined in [61]. Point defect energies at 0 K for the U3Si2 system are shown in Table 6
and compared to results from DFT [61]. Bound Schottky defects are also shown in Table 6. There
are two unique uranium sites in the U3Si2 structure. Both U sites are investigated and denoted
simply as U1 (for the 2a site) or U2 (for the 4h site), as in Remschnig, et al. [62]. The lowest energy
interstitial site is determined via a molecular dynamics simulation performed at 1000 K that was
then quenched down to 0 K and subsequently minimized. In this way, the interstitial is able to
reorient itself into the most preferable configuration. Three unique simulations were performed to
ensure the lowest energy configuration was obtained. The bound Schottky defect consists of two
U2 vacancies, one U1 vacancy and two Si vacancies, such that crystallographic and stoichiometric
accuracy is maintained. Excellent agreement is observed for the formation energy of the U2 vacancy,
Si vacancy, U interstitial, Si interstitial and the U1 antisite. Reasonable agreement is observed for
the U2 anti-site defect. The U1 vacancy and Si antisite formation energies are overestimated. The
overestimation of the U1 vacancy likely leads to the slight overestimation of the bound Schottky
defect formation energy.

DFT U-Si MEAM

U1 vac 0.68 1.16
U2 vac 1.20 1.25
Si vac 1.59 1.70
U int 0.76 0.71
Si int 0.19 0.28
U1 anti 0.16 0.23
U2 anti 0.35 0.60
Si anti 0.35 1.17

Schottky Bound 7.57 9.58

Table 6: Properties of point defects in U3Si2 at 0 K. Results from the MEAM U-Si potential are
compared to DFT calculations [61]. Units in eV.

In order to ensure that the potentials are not restricted to studying only the U3Si2 phase, other
phases, experimental and theoretical, were examined that were not included in the fitting procedure.
These include the FeB-USi, B1-USi, AlB2-USi2, L12-USi3, U3Si5 phases and the L12, α and β phases
of U3Si. The results are shown in Figure 6 for the energy per atom and in Figure 7 for the volume
per atom across the composition range. In Figure 6, excellent agreement is observed for the U-rich
portion of the composition range. For U3Si and U3Si2, formation energies are nearly identical to
those from experiments [58] and DFT calculations [46]. The lowest energy structure is the U3Si2
phase, which is the phase of primary interest, however this does not match the experimental or
DFT results, which find the USi2 and U3Si5 (a distorted USi2 structure with 1

6 of the silicon sites
vacant) structures to be lowest in energy, respectively. The MEAM potential correctly predicts
the FeB-USi phase to be lower in energy than the B1-USi phase, but overestimates the formation
energy of FeB-USi. Significant variance is observed for the USi3 structure. Generally, there does
exist a convex hull shape to the formation energy versus composition curve, which agrees with
experiments [58] and DFT.

In Figure 7, there is a general negative parabolic trend in the volume predicted as a function of
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composition, which matches the trends from DFT and experiments quite well. The volume per atom
is slightly overestimated in the Si-rich portion of the composition range. Per-atom volumes of USi,
U3Si2 and U3Si agree very well. Given that only U3Si2 was utilized as a fitting target and L12-U3Si
was utilized as a reference structure, there is considerable agreement across the entire composition
spectrum when comparing MEAM predicted results to the results from DFT calculations.

It should be noted that DFT (GGA without Hubbard U) calculations [46] found the presence of
another structure for U3Si2 that is lower in energy than the experimental structure. This structure
was destabilized by the addition of the Hubbard U term, which resulted in the correct prediction
of the experimental structure as the ground state. In order to ensure no such low energy structure
exists in the MEAM potential energy landscape, this alternate U3Si2 structure was analyzed. In
order to ensure all possible transformations and relaxations were allowed, a molecular dynamics
simulation was performed at 500 K, followed by a quench to 0 K and a subsequent minimization.
Throughout the entire relaxation process, each of the six components of the stress tensor are
independently controlled. The U-Si MEAM potential finds this alternate structure to be 0.03
eV/at higher in energy than the experimental structure, matching DFT+U and experiment.

Figure 6: Formation energy per atom as a function of uranium concentration for a variety of phases
in the U-Si system as calculated by the MEAM potential and compared to DFT calculations [46]
and experiments [58].

Although the ability to accurately predict the properties of a variety of crystal structures at 0
K is a critical step in the generation of a reasonable interatomic potential, being able to accurately
model systems at non-zero temperatures is necessary to fully utilize the strength of molecular
dynamics in bridging the atomistic and mesoscopic time and length scales. Thus, the nature of
U3Si2 was examined as a function of temperature. A 800 atom (4×4×5 unit cells) supercell is
equilibrated at a given temperature in an NPT ensemble utilizing a Nose-Hoover barostat and
a Langevin thermostat in the Grønbech-Jensen-Farago [63] formalism with a 1 fs timestep. The
damping parameters for the Nose-Hoover barostat and the Langevin thermostat are 0.1 and 0.01,
respectively. The target pressure is zero with the x , y and z components independently controlled.
The systems are equilibrated for 100 ps, with energies and volumes determined by averaging over
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Figure 7: Volume per atom as a function of uranium concentration for a variety of phases in the
U-Si system as calculated by the MEAM potential and compared to DFT calculations [46] and
experiments [58].

the final 50 ps of the simulation. The total energy and total volume of the supercell as a function
of temperature are displayed in Figure 8. It is observed that the structure is stable and behaves
predictably as a function of temperature. There are no observed crystal structure changes or
discontinuities suggesting potential instabilities. This agrees with experimental observations that
find no phase transformations as a function of temperature. The structure was visually confirmed
to be U3Si2 throughout the temperature range investigated. The normalized lattice constants are
also analyzed as a function of temperature to ensure there exist no structural irregularities. These
are displayed in Figure 9. There is expansion of the a and b lattice constants in equal proportion
as temperature increases, suggesting the tetragonal symmetry of the crystal structure is retained.
The c lattice constant also shows a gradual increase as a function of temperature, in a measure
slightly greater than that of the a and b lattice constants, indicating a slight increase in the c/a
ratio as temperature increases.

From Figure 8, the thermal expansion can be extracted. The calculated MEAM average linear
thermal expansion from 200 K to 1200 K is 11.8×10−6 K−1 for the U-Si MEAM potential, while
the experimental linear thermal expansion is 14-17×10−6 K−1 from Shimizu [8] and 16.1×10−6 K−1

from White [7]. While slightly underestimated, this is remarkable agreement given that this was
not included into the fitting procedure.

The molar heat capacity, given by equation 63,

CP =

(
δH

δT

)
P

(63)

was calculated at 400 K for comparison with White, et al. [7]. The calculated value from the
MEAM potential is 134.7 J/mol-K. This quantity compares very favorably to the Dulong-Petit
value of 125 J/mol-K and the experimental value of White, et al., which is 150 J/mol-K. It should
be reiterated that this thermo-physical property was not included into the fitting procedure, and
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thus this is considered excellent agreement to both theory and experiment. Regretfully, relatively
little other experimental data exists for comparison.

Figure 8: Energy per atom and volume per atom of U3Si2 as a function of temperature for the U-Si
MEAM potential.

The high temperature regime was investigated by calculating the melting point of U3Si2. In
order to determine the melting point, a two-phase system was constructed consisting of crystal and
liquid phases, as in Figure 10. This system was constructed by holding half of the supercell at a
temperature known to be below the melting point and super-heating the other half of the supercell
to induce melting. This system is then evolved at a temperature near the melting point, and the
two-phase interface is tracked. Advancement of the liquid phase into the crystal phase indicates that
the system is at a temperature above the melting point. The system was investigated in increments
of 50 K in order to determine a general temperature regime for the melting point of U3Si2. The
calculated melting point is approximately 1775 K for the U-Si MEAM potential. The experimental
melting point is 1938 K [58]. Although the melting point is underestimated by approximately 150
K, this is still considered excellent agreement.

As a nuclear fuel, it is necessary that this potential be able to model U3Si2 under irradiation.
In order to test the ability of the potentials to model radiation damage, a 1 keV cascade is inves-
tigated. The MEAM potentials are splined to a Ziegler-Biersack-Littmark (ZBL) [64] potential in
the standardized method implemented into LAMMPS. A 20,000 atom supercell (10×10×20 unit
cells) is equilibrated at 500 K for 100 ps in an NPT ensemble with a target pressure of 0 GPa. In an
NVT ensemble, a U1 atom is given additional kinetic energy in the [135] direction. The timestep is
reduced to 0.2 fs and the cascade is allowed to evolve for 12 ps. The residual damage is then evolved
at 500 K for 1 ns utilizing a 2 fs timestep. The state of the cascade and residual damage for the
U-Si MEAM potential is displayed in Figure 11 at three different times throughout the simulation.
It is observed that the crystal structure is stable and there exists a thermal spike and subsequent
annealing stage. At 0.4 ps after cascade initiation, Wigner-Seitz analysis via Ovito [65] shows that
there exist 35 Frenkel pairs; there exist 22 Frenkel pairs after 12 ps; there exist 17 Frenkel pairs
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Figure 9: Variation of normalized lattice constants of U3Si2 as a function of temperature for the
U-Si MEAM potential.

Figure 10: Two-phase system employed in the determination of the melting point of U3Si2.

after 1 ns. By investigating defects on each species sublattice, it can be determined the general
nature of the defects generated via this specific cascade. Looking strictly at the uranium sublattice
after 1 ns, there are 16 Frenkel pairs. Looking strictly at the silicon sublattice, there are 12 Frenkel
pairs. This gives a total of 28 defects. It can thus be determined that in the total system there
exist 17 Frenkel pairs and 8 anti-site defects after 1 ns, with approximately the same number of
defects on each sublattice. It can be concluded that this potential is displaying reasonable behavior
under irradiation and the nature and number of defects can be readily determined. It should be
noted that this is not intended to be a full radiation damage study, but simply an example that this
potential produces reasonable radiation damage behavior. Radiation damage studies are certainly
warranted in the future.

Another microstructural feature of interest is free surfaces. To investigate the nature of free
surfaces, two systems are created to investigate both the (100) free surface and the (001) free
surface (there exist multiple possible terminations, but in this work all terminuses are created at
unit cell boundaries). For the (100) free surface, a system supercell of 30×6×8 unit cells (14400
atoms) was generated. A vacuum region was created by increasing the simulation domain by 10%
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Figure 11: 1 keV cascade behavior of U3Si2 at 500 K. The left-most panel is 0.4 ps after cascade
initiation; the middle panel is 12 ps after cascade initiation; the right-most panel is 1 ns after
cascade initiation.

in the x direction. For the (001) free surface, a system supercell of 5×5×40 unit cells (10000
atoms) was generated. A vacuum region was created by increasing the simulation domain by 10%
in the z direction. This methodology creates two unique surfaces and thus the reported surface
energy is an average between the two surfaces. This methodology also ensures that stoichiometry
is maintained and the system can be directly compared to pure U3Si2. Both longer and shorter
systems were analyzed with more vacuum region and it was determined that this setup provided
an accurate determination of the surface energies. The system with free surfaces is equilibrated in
an NPT ensemble at 500 K for 100 ps and the average energy is determined over the final 50 ps of
the simulation. The relaxed structures of the (100) and (001) free surfaces are shown in Figure 12
and Figure 13, respectively. The first thing to notice is that the bulk structure remains stable and
retains its crystal symmetry. The surface energies are determined by Equation (64)

Esurf =
(E∗ − E)

SA
∗N (64)

where E ∗ is the energy per atom of the system with two free surfaces, E is the energy per atom
of the perfect crystal U3Si2, SA is the total free surface area (two free surfaces are present in the
system) and N is the number of atoms in the system with two free surfaces. The resultant energy
for the (100) surface is 1.73 J/m2 and the (001) surface energy is 1.75 J/m2. A prior DFT study
investigated free surfaces in U3Si2 [66, 67]. The surface energy was found to vary from 1.16 J/m2

to 1.48 J/m2. In this DFT study, the (100) surface had a surface energy of 1.48 J/m2, while the
(001) surface had a surface energy of 1.43 J/m2. The nature of the lowest energy surface was not
reported, but an average surface energy was estimated at 1.32 J/m2. Thus, the surface energy
predicted from the MEAM potential is slightly higher than that from DFT calculations, but still in
reasonable agreement. Given that the physical nature of the surfaces as predicted by the MEAM
potentials is reasonable combined with the calculation of reasonable surface energies, it is suggested
that the interatomic potential performs adequately for free surfaces in U3Si2.

To further investigate the performance of the potential, as well as to calculate an average
surface energy, a void is introduced into an equilibrated U3Si2 system, and then further relaxed.
The system with a void is equilibrated in an NPT ensemble at 500 K for 100 ps and the average
energy is determined over the final 50 ps of the simulation. It is observed that voids from a radius
of 4 Å up to 32 Å are stable within U3Si2 up to 100 ps (when simulations were terminated, voids
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Figure 12: (100) free surface of U3Si2 at 500 K after a 100 ps relaxation.

Figure 13: (001) free surface of U3Si2 at 500 K after a 100 ps relaxation.

larger than 32 Å were not investigated). The stoichiometry of the system is ensured to be within
0.001% of the ideal U3Si2 system. A representative void with a radius of 25 Å is shown in Figure
14. No void collapse is observed, no crystal structure collapse or distortion is observed, but minimal
void surface reconstruction does occur. This further reinforces the suitability and stability of the
potential for non-equilibrium systems. The void surface energy is determined via equation 64,
where SA is the surface area of the void. The void size is increased, along with system size, until
the void surface energy converged. The representative void surface energy is 1.69 J/m2 for the U-Si
MEAM potential.

Grain boundary energy is a critical parameter in order to accurately investigate polycrystalline
systems in mesoscale models. Two grain boundary types were investigated utilizing the U-Si MEAM
potential: a (310) symmetric tilt and a (100) twist. For the (310) tilt grain boundary, a system of
1180 atoms was generated. For the (100) twist grain boundary, a system supercell of 8600 atoms
was generated. This methodology creates two grain boundaries within the supercell and thus the
reported grain boundary energy is an average between the two grain boundaries, which should be
identical. This methodology also ensures that stoichiometry is maintained and the system can be
directly compared to pure U3Si2. The systems are equilibrated in an NPT ensemble at 500 K for
200 ps and the average energy is determined over the final 50 ps of the simulation. The relaxed
structure of the (310) tilt grain boundary is shown in Figure 15.

The first thing to notice is that the bulk structure remains stable and retains its crystal sym-
metry. The resultant energy for the (310) grain boundary is 1.2 J/m2 and the (100) twist grain
boundary energy is 1.25 J/m2. No prior experimental or density functional theory data on grain
boundary character or energy exists, and as such no comparisons can be made. Given that the phys-
ical nature of the grain boundaries as predicted by the MEAM potential is reasonable combined
with the calculation of reasonable grain boundary energies, it is suggested that the interatomic
potential performs adequately for grain boundaries in U3Si2.
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Figure 14: 2D projection of a 3D slice through the a U3Si2 supercell at 500 K containing a void
with a radius of 25 Å.

Figure 15: Symmetric tilt grain boundary in U3Si2 supercell at 500 K.

3.0.1 Discussion
The above assessment shows the potential performs satisfactorily for the U3Si2 phase, but with
specific strengths and weaknesses. The U-Si MEAM potential is sufficiently accurate with regards
to cohesive energy and volume per atom at 0 K. The majority of the defect properties are also
accurately reproduced as compared to DFT. The potential shows excellent behavior in the high
temperature regime, with reasonably accurate predictions of the thermal expansion, heat capacity
and melting point. This potential accurately describes the volumes of various U-Si phases across
the composition regime, but only accurately describes the formation energies in the U-rich region.
Given that nuclear fuel will operate in the U-rich composition regime, this is only a minor drawback.

This potential is somewhat weak regarding elastic constants, where it is generally over-stiff and
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yields a root mean square error of 55 GPa for the reported elastic constants. The bulk modulus is
overestimated by approximately 50 GPa, but the shear modulus is in quite good agreement with
DFT results. Also, although the majority of defect formation energies are accurately reproduced,
there is a significant enough variance from DFT for the U1 vacancy and the Si antisite defect that
care should be taken in systems where these defects are prevalent. Finally, this potential is not
intended for investigation of liquid phase U3Si2. Although the potential performs very well for
melting point of U3Si2, further validation should be conducted before undertaking work focused on
the liquid phase.

Given the complex nature of the crystal structure of U3Si2, the inherent difficulties associated
with the development of atomic potentials for pure uranium, let alone uranium-alloys, a suitable
interatomic potential to describe the U-Si system has been developed.
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Figure 16: A U3Si2 grain represented as a truncated octahedron (figure from [68]). For phase-field
simulations, the grain is decomposed into the intragranular region (shown schematically in lower
left) and the intergranular region (shown schematically in lower right).

4 Phase-field Simulation Results and Swelling Calculations

4.1 Methodology for Swelling Calculations
Although the phase-field model described in Section 2 is relatively computationally efficient, it is
not yet feasible to simulate a polycrystalline microstructure with intragranular and intergranular
bubbles. One primary reason for this limitation is that intragranular bubbles are typically small,
on the order of nanometers, requiring a much smaller interface thickness and corresponding mesh
resolution than would be required for the much larger intergranular bubbles and grain structure.
Although adaptive meshing can mitigate this problem to some extent, further optimization is
required before intragranular and intergranular bubbles can be simulated concurrently. Therefore,
in this work, we make an assumption about the microstructure and decompose it into regions where
one only type of bubble is found, so that simulations of the two regions can be performed with
different interface thicknesses.

The microstructure is assumed to be composed of U3Si2 grains that are approximated as identi-
cal truncated octahedra. The truncated octahedron is a 14-sided polyhedron that can be arranged
in a space-filling periodic array. It is bounded by 6 square faces and 8 hexagonal faces, as shown in
Fig. 16. A space-filling arrangement of these truncated octahedra (TO) is created when the square
faces are aligned with square faces from neighboring TO and the hexagonal faces are aligned with
hexagonal faces from neighboring TO in a periodically repeating arrangement. The size of the
truncated octahedron is set such that its total volume is equal to that of the volume of a spherical
grain with a radius of 5 μm, the size of a typical grain used in pellet-form nuclear fuel.

The volume of a representative grain is divided into a region where only intragranular bubbles
are found, and a separate region where only intergranular bubbles are found. The intragranular
bubbles are found at the center of the grain, as shown schematically in Fig. 16, and this region
obviously does not contain any intergranular bubles. At the edges of the grains, it is assumed that
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a denuded zone devoid of intragranular bubbles exists, and thus in this region only intergranular
bubbles are found. The formation of a denuded zone is based on the assumption that within a
certain distance of the grain boundary, newly formed gas atoms and vacancies will preferentially
flow to existing intergranular bubbles rather than nucleating new intragranular bubbles.

The intergranular and intragranular regions are simulated separately with different interface
thicknesses and mesh sizes. The swelling in the intragranular region due to the intragranular
bubbles, Sintra, can be estimated as equal to the volume fraction of bubbles in the intragranular
region. Similarly, the swelling in the intergranular region due to the intergranular bubbles, Sinter,
can be estimated as equal to the volume fraction of bubbles in the intergranular region. The total
swelling, ST , can be estimated as the volume fraction weighted average of the swelling in the two
regions:

ST = Vf,intraSintra + Vf,interSinter (65)

where Vf,intra and Vf,inter are the volume fractions of the intragranular region and intergranular
region based on the truncated octahedron geometry and the width of the denuded zone, wdn. wdn

is defined as the distance from the grain boundary to the edge of the region where intragranular
bubbles are found.

Vf,intra and Vf,inter can be calculated as follows. The TO representing the grain is constructed
from a regular octahedron with edge length 3a followed by removal of six right square pyramids with
base and edge length of a from each point of the octahedron [68]. The volume of the resulting TO
is VTO = 8

√
2a3. To determine a, VTO is set equal to the volume of a spherical grain with diameter

d = 5 μm. This results in a = 1.80 μm. The distance from the center of the TO to the centroid of
one of the square faces is l4 =

√
2a = 2.54 μm. To compute the volume fraction of the intragranular

region, recognize that the geometry of the intergranular region is also a TO with a smaller distance
from the center to the centroid of one of the square faces, which we denote as l′4. Since the size of
the TO containing the intergranular region is smaller than the width of the denuded zone compared
to the original TO, l′4 = l4−wdn. The width of the denuded zone is assumed to be 240 nm, resulting
in l′4 = 2.30 μm. For the smaller TO, a′ = l′4/

√
2 = 1.63 μm, and V ′

TO = 8
√
2(a′)3 = 48.6 μm3.

This results in Vf,intra = V ′
TO/VTO = 0.74 and Vf,inter = 1− Vf,intra = 0.26.

4.2 Swelling calculation in intragranular region
Swelling in the intragranular region is calculated using 2D phase-field simulations of intragranular
bubbles, using the model described in Section 2.2. The simulation domain, shown in Figure 17,
is 1024 nm × 1024 nm. Because no data was available on the initial bubble size and density, the
simulation initial conditions used 100 intragranular bubbles with a radius of 10 nm each. After
a short initial transient, the volume fraction of bubbles began to grow at a constant rate. To
determine the swelling as a function of time, the slope of the volume fraction versus time was
determined for the simulation data based on a least-squares fit to a linear function for the time
following the initial transient. It was assumed that the volume fraction of bubbles started at zero
and increased linearly from zero at the slope obtained from the fit of the simulation data. It should
be noted that this neglects the time required for the intragranular bubbles to nucleate, something
that will need to be addressed in future work. The swelling is assumed equal to the volume fraction
of bubbles, and plotted as a function of burnup rather than time using typical values for light water
reactor operation [39] in Figure 18.
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Figure 17: Morphology of growing intragranular bubbles, simulated using phase-field model in 2D.
Bubbles shown in red, fuel matrix shown in blue.

Figure 18: Swelling in the intragranular region as a function of burnup. Swelling is calculated from
the volume fraction of the intragranular bubbles.

4.3 Swelling calculation in intergranular region
As shown in Figure 16, swelling in the intergranular region is calculated using 3D simulations of
a single intergranular bubble at the interface between two grains. The intergranular region in the
simulations has a width 2wdn since wdn measures the distance between the grain boundary and
the edge of the denuded zone for a single grain. Here we set wdn = 240 nm, so Lx, the simulation
domain’s size in the x-direction (perpendicular to the grain boundary), is Lx = 480 nm. To set
the initial conditions for the simulation, we assume that in the early stages of intergranular bubble
formation, the bubble size and areal density will be comparable to that found in UO2. Based on
experimental data [69], we use a bubble areal density NA = 9.8/μm2 at a burn-up of 13 GWd/t U,
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equivalent to 320 days of operation or fissions per initial metal atoms (FIMA) of 1.4% for typical
light-water reactor conditions [39]. To obtain this areal density, the simulation domain size in the y
and z directions (parallel to the grain boundary) are Ly = Lz = 320 nm. The single bubble in the
initial conditions is spherical with r = 44 nm (this will rapidly expand along the grain boundary
to form a lenticular bubble with semi-dihedral angle of 69.3◦, as dictated by the balance of grain
boundary energy and matrix-bubble interfacial energy).

Based on these initial conditions, growth of the intergranular bubble is simulated using the
phase-field model and physical parameters described in Section 2.2. Images of the bubble’s mor-
phology are shown in Fig. 19. Swelling in the intergranular region is calculated from the volume
fraction of the bubble and is shown as a function of burnup (FIMA) in Figure 20. Based on these
simulation results, a linear function was fit to obtain swelling versus burnup for use in the total
swelling calculation. This function intercepts 0% swelling just above burnup of 0.01; below this
burnup, a swelling of 0% is assumed. This is physically equivalent to a nucleation time needed to
form the intergranular bubbles.

4.4 Total Swelling Calculation
The total swelling is calculated using Eq. (65) and the results of Fig. 20 and 18, and is shown
as a function of burnup in Fig. 21. Below burnup of approximately 0.01, as mentioned in Sec-
tion 4.3, intergranular bubbles have not yet nucleated, and the only contribution to swelling is from
intragranular bubbles. Just above a burnup of 0.01, intragranular bubbles begin to contribute to
swelling, resulting in the observed increase in the swelling rate. However, as previously discussed,
the simulations of the intragranular region have not yet considered the time required for nucleation
of the intragranular bubbles.

The swelling calculated using other approaches is also shown in Fig. 21 for comparison with
the present phase-field based swelling calculations. The swelling predicted by all methods is of
the same order of magnitude. The phase-field based approach presented in this report predicts
higher swelling than the empirical model currently used in BISON (black line) and a rate theory
model based prediction performed by Argonne National Laboratory (green line). For example, at
0.06 FIMA, the phase-field calculation predicts swelling to be approximately 6.5%, the rate theory
model predicts 5.5%, and the empirical model in BISON predicts 4%. For further information on
the data shown in Fig.21, refer to Ref. [70]. Since no data is currently available on swelling in
pellet-form U3Si2, the performance of the models cannot presently be compared to experiment.
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(a) 332 days, FIMA 0.014 (b) 338 days, FIMA 0.017

(c) 541 days, FIMA 0.023 (d) 727 days, FIMA 0.031

Figure 19: Morphology of growing intergranular bubble, simulated using phase-field model in 3D.
Bubble shown in green, grain boundary shown in light blue.
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Figure 20: Swelling in the intergranular region as a function of burnup. Swelling is calculated from
the volume fraction of the intergranular bubble.

(a)

(b)

Figure 21: (a) Total swelling, calculated using Eq. (65) and the results shown in Fig. 20 and 18. (b)
Total swelling calculated using empirical swelling model currently implemented in BISON (black)
and rate-theory model developed by Argonne National Laboratory (green). Figure from Ref. [70].
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5 Conclusions

A multi-scale computational approach has been used to estimate swelling in U3Si2, a promising
candidate for accident-tolerant nuclear fuel. To estimate swelling, the evolution of the fission
gas bubble microstructure was simulated using the phase-field method, and it was assumed that
volumetric swelling was equal to the volume fraction of bubbles calculated from the simulated
microstructures. The microstructure was assumed to be composed of 5 μm grains with a space-
filled truncated octahedron shape. Based on this geometry, the microstructure was decomposed
into intragranular and intergranular regions. It was assumed that near the grain boundaries, a
denuded zone free of intragranular bubbles exists, so that only intergranular bubbles were found
in that region. Growth of fission gas bubbles in the intragranular and intergranular regions was
simulated, and swelling was calculated for each region. The total swelling was then calculated using
a volume-fraction weighted average of the two regions based on the truncated octahedral geometry.

A new phase-field model was developed for this work, based on a grand-potential functional.
This model allows for simulation of an arbitrary number of phases and grains of each phase, and
can be applied to either intragranular or intergranular bubbles. The model was implemented using
MOOSE/MARMOT. This model has several significant advantages. It allows the removal of bulk
energy contributions from interfacial energy, which simplifies parameterization of the interfacial
energy. This feature also allows interface thickness to be increased, allowing use of a coarser mesh
and hence improved computational efficiency. Compared with the existing KKS phase-field model,
it does not require additional phase concentration variables, reducing the number of degrees of
freedom in the simulation and thus further improving computational efficiency. Another advan-
tage of the model is that two-phase interfaces are stable with respect to the spurious formation of
additional phases. Due to the model’s flexibility and advantages in numerical behavior and perfor-
mance, it is expected to be applicable to a wide variety of materials systems in addition to fission
gas bubble evolution.

The phase-field model was parameterized based on first-principles calculations using DFT and
MD. For the MD simulations, a new MEAM-based interatomic potential was developed for the U-Si
system. The potential performs satisfactorily for the U3Si2 phase. The U-Si MEAM potential is
sufficiently accurate with regards to cohesive energy and volume per atom at 0 K and the majority
of the defect properties are also accurately reproduced as compared to DFT. The potential shows
excellent behavior in the high temperature regime, with reasonably accurate predictions of the
thermal expansion, heat capacity and melting point. This potential can also adequately describe
various U-Si phases across the composition regime.

Total swelling was calculated using the multi-scale approach and reached over 6.5% at a burnup
(FIMA) of 0.06. This was of the same order of magnitude as swelling estimates from the existing
empirical model and a rate-theory based model. No experimental data is yet available for compari-
son and validation of the swelling prediction. However, several suggestions for improvements to the
model and future directions are made in the following paragraphs based on known uncertainties in
the calculation.

One highly uncertain parameter is the net rate of vacancy production, s0v, which is assumed to
be ten times greater than the rate of insoluble fission gas production, s0g. This assumption about
the net vacancy production rate has a strong influence on the swelling rate. However, in reality,
many more interstitial-vacancy pairs are created, but many rapidly recombine, and there is a net
production of vacancies because the less tightly bound interstitial atoms diffuse more rapidly to
sinks such as dislocation loops and grain boundaries. To improve the accuracy of the model, two
possible approaches are described. The first would be to track interstitial concentration in the phase
field model, to include interstitial production in addition to vacancy production, and to include the
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presence of sink terms for both interstitial and vacancies. However, the parameterization of the sink
strengths would likely be challenging to do in a physical way. Another possible approach would be
to use atomistic modeling techniques to physically parameterize the net vacancy production rate.

Another uncertain parameter is the width of the denuded zone, wdn. To determine this width,
one possible approach would be to conduct a phase-field simulation of the microstructure near a
grain boundary, allowing for the nucleation of both intergranular and intragranular bubbles. This
would require testing of the MOOSE/MARMOT nucleation system within the newly developed
grand potential formulation, and parameterization of the nucleation rate of each type of bubble.
In conjunction with this, simulations of a greater number of intergranular bubbles along a grain
boundary should be performed, with a size distribution based on either experimental data or cluster
dynamics simulations. Looking further ahead, if the model can be made sufficiently efficient, large-
scale simulations of the complete grain structure with both intragranular and intergranular bubbles
could be performed on large-scale high performance computing resources.

Although the simulations of the intragranular region included multiple bubbles in the initial
condition, the simulations were conducted in 2D. To be more realistic, 3D simulations should be
conducted. In addition, the initial conditions for these simulations should be parameterized in a
more physical way, with a size distribution based on either experimental data or cluster dynamics
simulations. This would allow a more realistic evaluation of the time required for nucleation of
intragranular bubbles. Finally, the effect of re-solution of fission gas atoms from bubbles to the
matrix could be made more realistic through coupling with binary collision Monte Carlo simulations.
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